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Abstract 

AmberTools is a free and open-source collection of programs used to set up, run and analyze 

molecular simulations. The newer features contained within AmberTools23 are briefly described 

in this Application note.  
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Introduction 

The present status of the Amber (Assisted Model Building and Energy Refinement) suite of 

programs has been the product of decades of effort from a broad range of research groups starting 

with the group of the late Peter Kollman in the early 1980s.1 Amber contains tools for energy 

minimization (EM), molecular dynamics (MD) simulations, free energy (FE) calculations, 

potential of mean force (PMF) capabilities and all the needed tools to set up the modeling effort. 

The software stack has been reviewed in the past2-4 and the manual contains detailed descriptions 

of all the algorithms in Amber as well as a full list of contributors to Amber over the years (see 

https://ambermd.org). Besides the actual code, Amber is used to describe a series of highly 

regarded force fields5 for proteins6-12, carbohydrates13, 14, nucleic acids7, 8, 15 and lipids16. The 

present Application Note will only describe the latest additions to the open-source AmberTools23 

and as such is not meant to give a through exposition of all the methods and capabilities of 

AmberTools and Amber. 

 

Overview of Amber and AmberTools 

 Amber and AmberTools form a collection of programs that are designed to work together 

to facilitate system setup, MD simulations and trajectory analysis for biomolecules. It is useful to 

note that the Amber force fields mentioned above, can be used in a variety of molecular dynamics 

codes, outside of AmberTools and Amber. The Amber code releases, offset in years from the 

AmberTools releases, uniquely include the base MD code known as pmemd, which offers parallel 

and GPU-accelerated versions of the MD codes along with some free-energy based methods not 

implemented in AmberTools. Analogous MD function is available in sander in AmberTools. 

AmberTools is distributed under an open-source license, primarily the GNU General Public 
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License, with some portions covered by other, compatible, open-source licenses. The Amber force 

fields are in the public domain, and are distributed with AmberTools. The pmemd code is 

distributed as source code, but has a separate license that contains restrictions on use and 

redistribution; there is no license fee for non-commerical use of pmemd. Full details on licensing 

and distribution can be found at https://ambermd.org. 

 

Typical workflow 

 The basic workflow for AmberTools is shown in the accompanying (see Figure 1), and 

describes preparation, simulation and analysis steps. Preparation starts at the top, since all MD 

simulations require some sort of starting three-dimensional structure, which for biomolecules is 

usually in the form of a PDB-format file; AmberTools has some model-building capabilities (e.g. 

PACKMOL-Memgen, see below), but other codes are generally used if experimental structures are 

not available. The prepareforleap step, which is recent and still under development, carries out 

tasks to map components in the input file to Amber nomenclature (especially useful for 

carbohydrates), add hydrogens, identify crosslinks, assign histidine protonation states, and similar 

tasks. Next is the LEaP program, which is a workhorse program that connects the nascent structure 

to Amber’s built-in force fields for proteins, nucleic acids, carbohydrates, lipids and common 

solvents, and to bespoke force fields for other components like ligands and cofactors, that can be 

created by programs like antechamber and mdgx (for general organic molecules), and pyMSMT 

(for metal ions). The LEaP code creates two files: a “inpcrd” file that has complete three-

dimensional coordinates, and a “prmtop” file that contains all other information needed for force 

field-based analyses of the system. The latter file can be examined and edited via parmed, which 

can also export similar files in GROMACS or CHARMM format.  
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 The simulation phase is primarily the province of sander or pmemd. The “mdin” file 

contains a large number of parameters that control the type and length of the simulation to be 

carried out, the integration method, the use of a QM/MM (quantum mechanics/molecular 

mechanics) model, specification of enhanced-sampling and thermodynamic integration methods, 

and the like. Restraints on the system, often from NMR or X-ray data, but more recently from 

cryoEM and other sorts of integrative modeling can also be input at this point. 

 

 Snapshots of conformations are generally stored at regular intervals during a simulation, 

and then serve as input for an analysis phase. The cpptraj program is the workhorse code here, 

providing geometric and energetic analysis, clustering algorithms, and many other routines. Three 

other codes, MMPBSA.py, FE_Toolkit and FEW (Free Energy Workflow)17 are devoted to 

estimating free energy changes. More complete descriptions of all of this, including a full list of 

programs,  encompassing nearly 1,000 pages of text, is in the Amber23 Reference Manual. 
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Figure 1. Common workflow in AmberTools. Flow goes from top to bottom. Black boxes are for 

preparation, gray indicates an optional preparation step specific for membrane systems, blue for 

simulation, and red for analysis. 

 

AmberTools23 Updates 

We have a number of significant new features for AmberTools23 which include automated 

building of membrane-protein−lipid-bilayer systems, enhancements to the polarizable Gaussian 

multipole method, extensions to the PBSA method, enhanced free energy capabilities, enhanced 
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QM and QM/MM capabilities, and a significant upgrade of Amber website and tutorials. Each of 

these additions are summarized below.  

 

1. Polarizable Gaussian Multipole model in the SANDER program 

Polarizable Gaussian Multipole (pGM) model is a next generation induced dipole polarizable 

model aiming to balance accuracy and efficiency for molecular simulations of biomolecular 

systems.18-22  We recently developed a new framework for efficient computation of analytical 

atomic gradient for the pGM model.18 The pGM virial for constant pressure molecular dynamics 

simulations was also implemented in previous releases of Amber.19 The accuracy and robustness 

of the pGM model have also been validated on various molecular properties.20-22 In the 

AmberTools23 release, we further optimized the induced dipole iteration algorithm. Specifically, 

we introduced maximum relative error as the convergence criteria to ensure the energy 

conservation in molecular dynamics simulations. We also designed and implemented multi-order 

extrapolation (MOE) and local preconditioning conjugate gradient (LPCG) schemes to accelerate 

the induced dipole iteration.23 Given the new developments, MD simulations with the pGM model 

is able to achieve similar level of energy conservation as those with the point charge additive 

models, within 2~3 induction iterations. 

 

2. New features in the PBSA program 

MM/PB(GB)SA24 is an end-point method for calculating the free energies of molecules in implicit 

solvent, i.e., Poisson Boltzmann (PB) and generalized Born (GB). Solvation interactions, 

especially solvent-mediated dielectric screening and Debye-Hückel screening, are essential 

determinants of the structure and function of biomolecules. Several efficient finite-difference 
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numerical solvers, both linear25-27 and nonlinear,28 are implemented in pbsa for various 

applications of the Poisson-Boltzmann method. The GPU support of those solvers is also 

implemented in pbsa.cuda.29-31 In the 2023 release, improvements to the pbsa program include the 

integration of the Machine-Learned Solvent Excluded Surface (MLSES) model,32 which provides 

a highly efficient and differentiable molecular surface for continuum solvation modeling of 

biomolecules. Various options for the MLSES model have been implemented, allowing users to 

optimize performance on both CPU and GPU platforms using Fortran, CUDA kernel, and 

LibTorch. This flexibility enables users to choose the best-suited hardware and software 

environments for their needs. Additionally, an MBAR/PBSA strategy has been developed, 

combining the PBSA continuum solvent model with the Multistate Bennet Acceptance Ratio 

(MBAR) approach. This coupling allows for more accurate modeling of electronic polarization, 

leading to improved accuracy in absolute binding free energy simulations of highly charged 

ligands.33 

 

To date, the GB model in AmberTools could be specified with the following “igb” values: 134, 235, 

536, 7, and 837. In 2017, an accurate yet efficient grid-based surface GB model was introduced38 

which is currently available in AmberTools as a stand-alone application named GBNSR6 

($AMBERHOME/bin/gbnsr6).39 GBNSR6 calculates the solvation free energy of an input 

structure on a single snapshot. In AmberTools23, GBNSR6 has been integrated into MMPBSA.py40 

such that it runs over multiple snapshots extracted from the trajectories of protein, ligand, and 

complex structures. To run this model “igb=66” is now available in MMPBSA.py which activates 

the GBNSR6 model.  All input parameters of the stand-alone GBNSR6 program can be modified 

through the MMPBSA.py input file.  
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3. PyRESP and PyRESP_GEN 

Accurate modeling of electrostatic and polarization effects is crucial in molecular simulations. 

Many polarizable force fields have been developed to account for these important effects. Among 

these models, polarizable Gaussian Multipole (pGM) model has emerged as a self-consistent 

approach in handling both short-range and long-range interactions.18-22, 41 We have recently 

developed the PyRESP program42 for electrostatic parameterizations for point charge additive 

models and induced dipole models, including the pGM model. By performing least-squares fittings 

to electrostatic potentials surrounding molecules, the PyRESP program extends functionalities of 

the ancestor RESP program that only perform parameterizations for point charge additive 

models.43 However, the process of generating input files for PyRESP is tedious and error-prone. 

In the AmberTools23 release, we implemented a flexible and user-friendly program, 

PyRESP_GEN, to minimize the user efforts to set up a PyRESP run. In addition, we also optimized 

the restraint weights for the pGM models with and without permanent dipoles. For the pGM-perm 

model, the optimal strategy for electrostatic potential fitting is also proposed. 

 

4. 3D-RISM 

The 3D reference interaction site model (3D-RISM) of molecular solvation44 is an implicit solvent 

model that calculates equilibrium density distributions and thermodynamics of explicit solvent 

models. The implementation in AmberTools permits MD, energy minimization and trajectory 

analysis through sander, while rism3d.snglpnt provides standalone trajectory analysis.45 Recently, 

periodic boundaries were introduced, allowing application to crystal structure refinement and other 

periodic systems.46 In addition, computational scaling for open boundaries was improved via 
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treecode summation for electrostatic interactions, providing a 2-4 times speedup for typical 

proteins and enabling application to large biomolecular complexes with more > 1 million atoms.47 

 

5. LibTorch interface to Amber 

We introduced a LibTorch interface to the 2023 release of AmberTools, which is a cutting-edge 

C++ runtime library developed by the PyTorch team.48 This library enables flexible tensor 

computations and dynamic deep neural network modeling. Amber now provides two options for 

enabling the LibTorch library: built-in mode and user-installed mode. With the LibTorch 

integration, the pbsa program supports both CPU and GPU environments, making it highly 

versatile. Additionally, user instructions and tutorials have been provided for configuring the 

LibTorch library, making it more accessible to researchers and developers working in Amber and 

AmberTools. 

 

6. Free Energy 

Free energy methods have been a mainstay of Amber for decades.49, 50 Besides our existing free 

energy technology base this latest release of AmberTools includes a collection of new software 

tools for the robust analysis of free energy simulations (FE-ToolKit)51, 52, as well as workflow tools 

for production free energy simulation setup and analysis (ProFESSA)53 using the GPU-accelerated 

Amber free energy engine with enhanced sampling features. This software is part of the Amber 

Drug Discovery Boost package.54 

 

6.1. FE-ToolKit: FE-ToolKit contains two main utilities: edgembar52  for analysis of alchemical 

free energy simulations (e.g., such as those used for prediction of ligand-protein absolute and 
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relative binding free energies in drug discovery55), and ndfes51 for analysis of multidimensional 

free energy profiles (e.g., such as those used for prediction of minimum free energy pathways in 

studies of enzyme mechanisms56, 57). 

 

6.2. Edgembar: The edgembar program performs analysis of alchemical free energy simulations 

using the multistate Bennett acceptance ratio (MBAR) method,58 the Bennett acceptance ratio 

(BAR) method,59 exponential averaging,60 thermodynamic integration,61 or combinations of these 

approaches. Alchemical free energy simulations often calculate a network of relative free energy 

differences between two environments. For example, ligand binding applications in drug discovery 

use a network of alchemical transformations between ligands, termed a “thermodynamic graph”, 

where each ligand represents a “node” in the graph and each “edge” represents an alchemical 

transformation between ligands bound to their target relative to in aqueous solution. Given the 

alchemical simulation outputs from the independent trials in both environments, edgembar will 

perform "network-wide" free energy analysis,52 including the imposition of cycle closure and, 

optionally, experimental constraints. The analysis produces a comprehensive report of the results, 

including uncertainties and warnings. The report identifies potential problems with simulations 

that may require further attention. The issues include: a lack of convergence, the analysis of too 

few statistically independent samples, poor phase space overlap between adjacent alchemical 

states,62 and poor reweighting entropy.63 

 

6.3. Ndfes: The ndfes program evaluates multidimensional free energy surfaces from umbrella 

sampling.51 The analysis can be performed with the variational free energy profile (vFEP) method, 

64, 65 MBAR,58 the weighted thermodynamic perturbation method (wTP),66 and the generalized 
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weighted thermodynamic perturbation method (gwTP).67 The wTP and gwTP methods estimate 

the free energy surface of an expensive target-level of theory from the sampling performed with 

inexpensive reference potentials.67 The estimation ab initio QM/MM free energy surfaces in 

condensed phase environments has become more practical in the latest version of AmberTools 

with the combined introduction of the GPU-accelerated QUICK software68and ndfes analysis 

program. 

 

6.4. ProFESSA: The ProFESSA workflow53 uses the GPU-accelerated AMBER free energy 

engine. The workflow establishes a flexible, end-to-end pipeline for performing alchemical free 

energy simulations that brings to bear technologies including new smoothstep softcore potentials 

and optimized alchemical transformation pathways,69 alchemical enhanced sampling (ACES) 

method,70 and network-wide free energy analysis52 with optional imposition of cycle closure and 

experimental constraints implemented in FE-ToolKit. 

 

7. Quantum Mechanical/Molecular Mechanical methods 

Amber has had a long tradition of QM/MM methods and implementations,71 with the most recent 

additions being the QUICK/sander QM/MM implementation in AmberTools23.68, 72-74 

QUICK/sander has been extensively updated and its performance has been significantly improved.  

 

7.1 Performance improvements/AMD Implementation: With the second generation electron 

repulsion integral code and other performance enhancements recently introduced into QUICK68, 

72-74, higher ps/day can be obtained in QM/MM simulations.74 For instance, with respect to 

AmberTools21,75 up to 2x speedups have been observed  for benchmark simulations with different 
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QM regions of photoactive yellow protein on NVIDIA V100 GPU.74 Furthermore, support for 

AMD GPUs has been enabled. Users can now make use of AMD data center cards such as MI50, 

MI100, MI200 and MI250 for simulations. According to benchmark studies, the performance on 

the MI100 is similar to that of NVIDIA V100.74 The implementation runs properly on MI200 and 

MI250 cards, however, the performance is not yet optimized for these cards. The recommended 

AMD GPU for current version is MI100. An optimized version for MI2XX will be available to 

users in next AmberTools release.  

 

7.2 Long-range Electrostatics: For the treatment of long range electrostatics in QM/MM, ambient 

composite Ewald method (CEw) developed by Giese and York76 has been integrated. The 

performance penalty for turning on CEw in the GPU version is <25% for HF and  <10% for DFT 

in comparison to standard QM/MM with 8 Å electrostatic cutoff. This allows users to carry out 

more accurate simulations at a slightly higher computational cost.  

 

7.3 Dispersion: Among other minor features introduced into QUICK, dispersion corrections in 

DFT, data exporting capability into Molden format are notable. Grimme’s dispersion corrections 

(D2, D3 with different damping)77 can be used in QM/MM with appropriate functionals. Users can 

also export Cartesian coordinates, molecular orbitals, etc. of the QM region into Molden format 

for visualization purposes.  

 

8. Automated building of membrane-protein−lipid-bilayer systems 

PACKMOL-Memgen is a simple-to-use command line implementation of a generalized workflow 

for the automated building of membrane-protein−lipid-bilayer systems based on open-source tools 
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including Packmol, memembed, pdbremix, and AmberTools.78 It allows setting up multiple 

configurations of a system in a user-friendly and efficient manner, which can serve as starting 

configurations in MD simulations under periodic boundary conditions. Since its introduction, 

support was added for additional lipid headgroups and to include solutes in the water or membrane 

phase and generate curved membrane surfaces or double bilayer systems. Additionally, SIRAH79 

coarse-graining routines can be used and membrane systems (water or mixed-solvent simulations) 

can now be set up80 In the AmberTools23 release, PACKMOL-Memgen now handles all Amber-

supported ions and the OPC3 water model as well as allows generating HMR systems, providing 

control for pmemd.cuda, and using pdb2pqr for protonating the protein. 

 

9. mdgx 

The mdgx program, which began as a de-novo re-implementation of the basic features needed for 

molecular dynamics and stayed in service for its uncommon capability of storing multiple 

topologies and coordinate sets in the space of a single runtime instance, has gained two noteworthy 

features. First, it can post-process Amber topology files to add pmemd-compatible representations 

of the GROMACS virtual sites.81 While mdgx itself can perform limited MD simulations with such 

models, the performant pmemd GPU implementation can now incorporate the massless sites into 

its free energy methods. Virtual sites require parameters to be useful, but the mdgx program itself 

has tools for fitting their charges as well as bonded parameters in the context of these extra 

monopoles. Virtual site force fields are a logical extension of popular fixed-charge models, 

entailing incremental updates to the dynamics engine and incremental increases in the cost of the 

simulations. Second, through its ability to calculate multiple systems at once, mdg has an 

exploratory feature for running simple implicit solvent dynamics on many replicas of different 
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topologies on one GPU. By running independent trajectories on each GPU multiprocessor, mdgx 

scales simulations of small peptides and drug molecules to modern GPUs with tens of times the 

throughput of other GPU MD implementations when tasked with small systems. This capability 

has been applied to docked pose refinement.82 

 

10. The Amber Website and Tutorials 

The Amber website (https://ambermd.org) supports the user community with new release 

information, manuals, tutorials and information on force fields. Users are directed to the most 

recent manual version to learn about technical usage and appropriate literature references to 

communicate best practices in the field. The Amber tutorials have also been reorganized and span 

topics ranging from initial system setup to advanced methods (Figure 2). A tutorial overview page 

guides new users through the process of building, running and analyzing a system, and points them 

to key initial case studies. The recent tutorials overall are more modular and learning objectives 

are given. New tutorial development has focused on building different system types, tutorials for 

creating stable systems through relaxation of system positions for both explicit and implicit 

solvent, as well as a tutorial covering advanced thermodynamic integration methods such as using 

smoothstep softcore potentials,69 enhanced sampling for softcore ligand energies and methods such 

as ACES.70 

 

Modeling software is not useful without compatible force fields. Included in the release of 

AmberTools are the force fields developed by the Amber community. The main force fields page 

contains a list of recommended force fields and each type of molecule/ion has a separate page 

outlining nuances in choosing an appropriate force field. 
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Figure 2. Overview of the Amber Tutorials. Tutorials are modular, cover the basic steps of a 

typical molecular dynamics simulation, introductory case studies, advanced methods and some 

tools that are commonly employed by Amber users. 

 

Conclusions 

The most significant additions to AmberTools23 are briefly summarized. AmberTools is freely 

available at https://ambermd.org. Full details on licensing, distribution and hardware supported 

can be found at https://ambermd.org. 
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